Чудо  - Рациональность - Наука - Духовность

Клуб Исследователь - главная страница

ЖИЗНЕННЫЙ ПУТЬ - это путь исследователя, постигающего тайны мироздания

Чем больше знаешь, тем больше убеждаешься что ни чего не знаешь...

Главная

Библиотека

О клубе
ГАИ "Алтай-Космопоиск"
Путеводитель по Алтаю
Маршруты (походы)
   Туризм

X-files

Наука и технологии

Техника и приборы

Косморитмодинамика

Новости

Фотоальбомы

Видеоальбомы

Карты (треки)

Прогноз погоды

Контакты

Форум

Ссылки, баннеры

 

Наш сайт доступен

на

52 языках

 

 
Если вам понравился сайт, то поделитесь со своими друзьями этой информацией в социальных сетях, просто нажав на кнопку вашей сети.
 
 
 
 
 
  Locations of visitors to this page
LightRay Рейтинг Сайтов YandeG Яндекс цитирования Яндекс.Метрика

 

Besucherzahler

dating websites

счетчик посещений

russian brides

contador de visitas

счетчик посещений

 

 

Здесь

может быть ваша реклама.

 

Наука и технологии

Виртуальный фонд естественнонаучных и научно-технических эффектов "Эффективная физика"
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Ы  Э  Ю  Я   По связи разделов
Эмиссия акустическая
Излучение упругих волн при пластической деформации

Анимация

Описание

Эмиссия акустическая - излучение упругих волн, возникающее в процессе перестройки внутренней структуры твердых тел. Акустическая эмиссия проявляется при пластической деформации твердых материалов, при возникновении и развитии в них дефектов, например при образовании трещин, при фазовых превращениях связанных с изменением кристаллической решетки, а так же при резании твердых материалов. Физическим механизмом, объясняющим ряд особенностей акустической эмиссии, является движение в веществе дислокаций и их скоплений. Дислокационные процессы, связанные с отрывом дислокаций от точек закрепления, торможением их у препятствий, возникновением и уничтожением отдельных дислокаций, - имеют существенно неравномерный, и даже прерывистый, характер. Это является причиной, обуславливающей излучение волн напряжения, т.е. акустической эмиссии. Соответственно акустическая эмиссия имеет «взрывной», импульсный характер; длительность импульса может составлять 10-8ё10-4 с, энергия отдельного импульса - от 10-9до 10-5 Дж.

В качестве источника акустической эмиссии можно рассматривать расположенный в глубине образца твердого тела элемент объема, испытывающий изменение напряженного состояния. Сигналы акустической эмиссии проявляются в виде колебаний поверхности образца, смещение при которых составляет 10-14ё10-7 м; иногда эти сигналы достаточно сильны и могут восприниматься на слух (например, «крик олова» при пластическом деформировании этого материала). Сигнал эмиссии, распространяясь от источника к поверхности образца, претерпевает существенное искажение вследствие дисперсии скорости звука, трансформации типа и формы волны при отражении, затухании звука и др. Если время затухания сигнала и время переходных процессов в образце меньше промежутка времени между излучаемыми импульсами, эмиссия воспринимается в виде последовательности импульсов и называется дискретной или импульсной. Если же интервал между отдельными актами излучения меньше времени затухания, эмиссия имеет характер непрерывного излучения, в подавляющем большинстве случаев нестационарного, и называется непрерывной или сплошной. Дискретная эмиссия имеет место, например, при образовании трещин, непрерывная - в процессе резания. Частотный спектр акустических эмиссий весьма широк - он простирается от области слышимых частот до десятков и сотен МГц.

К основным параметрам, характеризующим акустическую эмиссию, относятся:

- общее число импульсов дискретной эмиссии за исследуемый промежуток времени; 

- так называемая суммарная (или интегральная) эмиссия - число превышений сигналом эмиссии установленного уровня за исследуемый промежуток времени; 

- интенсивность эмиссии - число превышений сигналом эмиссии установленного уровня в единицу времени; 

- амплитуда эмиссии - максимальное значение сигнала эмиссии в течение заданного промежутка времени; 

- уровень сигналов эмиссии - среднее квадратичное сигнала за рассматриваемый промежуток времени.

 Корреляцию этих параметров с развитием дефектов устанавливают при лабораторных испытаниях образцов, в процессе которых регистрируют в функции времени параметры акустической эмиссии и действующую внешнюю силу или деформацию образца (рис. 1).

 

Зависимость интенсивности акустической эмиссии N и ее амплитуды A на выходе преобразователя от времени при возрастании приложенной к образцу растягивающей силы P

 

 

Рис. 1

 

Образец из алюминиевого сплава сечением 30х4 мм2 с надрезом глубиной 10 мм и начальной трещиной.

 

Если акустическая эмиссия имеет квазистационарный характер, параметром эмиссии, дающим информацию о состоянии материала и о происходящих в нем процессах, может служить ее частотный спектр.

Для регистрации параметров акустической эмиссии, а также для записи формы сигналов и их длительности применяют специальную аппаратуру, которая обеспечивает прием слабых сигналов эмиссии на фоне шумов, обладает необходимым быстродействием (интенсивность эмиссии меняется в пределах от 0 до 105 импульсов в секунду) и малыми собственными шумами. В качестве приемников колебаний в большинстве случаев используются пьезокерамические преобразователи; оптические интерференционные методы измерения колебаний с применением лазерного излучения. Сигналы с датчиков колебаний усиливают и подвергают дальнейшей обработке с помощью электронной аппаратуры. Обычно рабочий диапазон аппаратуры: 1·104 Гцё1·107 Гц.

Временные характеристики

Время инициации (log to от -8 до -1);

Время существования (log tc от -7 до 3);

Время деградации (log td от -5 до -1);

Время оптимального проявления (log tk от -6 до 2).

Диаграмма:

Технические реализации эффекта

Техническая реализация эффекта

Простейшая реализация состоит в помещении под пресс куска прозрачного материала (стекло, оргстекло) и съемке процесса раздавливания на видеопленку. Покадровый просмотр позволяет убедиться в синхронности звуковых импульсов с возникновением и развитием индивидуальных трещин.

Для тех, кто не особенно болеет наукообразием, достаточно сломать палку об колено и сравнить получаемый треск со своими мускульными ощущениями излома.

Применение эффекта

Эффект акустической эмиссии широко используется в информационно-измерительных системах раннего распознавания трещин, при испытаниях материалов на ползучесть, для выявления скрытых дефектов на стадии их зарождения, для исследования коррозии металлов под напряжением, для определения дефектов в металлических и неметаллических композиционных материалах, для локации дефектов и изучения кинетики развития трещин в сварных швах и др. По параметрам эмиссии судят о процессах в кристаллических телах при их нагревании и охлаждении, например регистрируют в металлических материалах фазовые превращения мартенситного типа. Акустическая эмиссия используется также при выборе режимов резания металлов. В производственных условиях методы акустической эмиссии применяются для локализации и определения параметров дефектов и наблюдения за их развитием при испытаниях сосудов высокого давления, элементов конструкции различного типа, в т.ч. элементов ракет и самолетов.

Литература

 1. Ультразвук / Под ред. И.П. Голяминой.- М.: Советская Энциклопедия, 1979.

 2. Бреховских Л.М., Гончаров В.В. Введение в механику сплошных сред.- М.: Наука, 1982.

 3. Акустополяризационные измерения характеристик анизотропии горных пород (методические рекомендации). Апатиты, 1985.

Ключевые слова

  • деформация
  • пластическая деформация
  • трещины
  • кристаллическая решетка
  • дефекты
  • звук
  • импульс звука
  • энергия
  • длительность импульса

Разделы естественных наук:

Акустика
Механические колебания и волны
Механические свойства твердых тел
Упругость и пластичность

Формализованное описание Показать