Чудо  - Рациональность - Наука - Духовность

Клуб Исследователь - главная страница

ЖИЗНЕННЫЙ ПУТЬ - это путь исследователя, постигающего тайны мироздания

Чем больше знаешь, тем больше убеждаешься что ни чего не знаешь...

Главная

Библиотека

О клубе
ГАИ "Алтай-Космопоиск"
Путеводитель по Алтаю
Маршруты (походы)
   Туризм

X-files

Наука и технологии

Техника и приборы

Косморитмодинамика

Новости

Фотоальбомы

Видеоальбомы

Карты (треки)

Прогноз погоды

Контакты

Форум

Ссылки, баннеры

 

Наш сайт доступен

на

52 языках

 

 
Если вам понравился сайт, то поделитесь со своими друзьями этой информацией в социальных сетях, просто нажав на кнопку вашей сети.
 
 
 
 
 
  Locations of visitors to this page
LightRay Рейтинг Сайтов YandeG Яндекс цитирования Яндекс.Метрика

 

Besucherzahler

dating websites

счетчик посещений

russian brides

contador de visitas

счетчик посещений

 

 

Здесь

может быть ваша реклама.

 

Наука и технологии

Виртуальный фонд естественнонаучных и научно-технических эффектов "Эффективная физика"
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Ы  Э  Ю  Я   По связи разделов
Электрострикция
Деформация диэлектриков в электрическом поле пропорционально квадрату напряженности электрического поля

Анимация

Описание

Электрострикция - деформация твердых, жидких и газообразных диэлектриков в электрическом поле, обусловленная их поляризацией и пропорциональная квадрату напряженности электрического поля. Квадратичная зависимость деформации от напряженности поля Е означает, в частности, что знак электрострикции (т.е. расширяется или сжимается вещество в электрическом поле) не зависит от направления поля. В переменном поле в результате электрострикции механические колебания происходят с частотой  вдвое большей, чем частота поля. В твердых телах электрострикция выражается квадратичной формулой:

 

,  (1)

 

где ulm - компонента тензора деформации;

Ei и Ej - составляющие напряженности электрического поля;

qijlm - коэффициенты электрострикции;

все индексы i, j, l, m принимают значения 1, 2, 3 или соответственно - х, у, z.

 

В газах и жидкостях электрострикцию описывают формулой:

 

,

где  - относительная объемная деформация;

А - постоянная электрострикции.

 

Электрострикция обусловлена поляризацией диэлектриков в электрическом поле, т.е. смещение под действием поля атомов, несущих на себе электрические  заряды (ионы, электрические диполи), или изменением ориентации диполей. Электрострикцией обладают все твердые диэлектрики независимо от их структуры и симметрии, в отличие от пьезоэффекта, который наблюдается только у сред, не имеющих центра симметрии. С другой стороны, создание механических напряжений в веществах, обладающих электрострикцией, но не являющихся пьезоэлектриками, не сопровождается возникновением электрической поляризации и соответственно электрического поля: в средах, обладающих центром симметрии, однородная деформация, возникающая под действием механических напряжений, вызывает однородное изменение расстояний между зарядами атомов и, следовательно, не приводит к появлению электрического момента, т.е. поляризации. Поэтому, в принципе, электрострикцию можно использовать для возбуждения звука (с удвоенной по отношению к электрическому полю частотой), но не для преобразования звуковых колебаний в электрические.

Количественно электрострикционная деформация твердых тел меньше, чем пьезоэлектрическая. Величина q обусловленной электрострикцией деформации в кристаллах не превышает по порядку величины 3*10-10.

Электрострикция наблюдается в жидкостях, газах, обладающих дипольными моментами. Среди жидкостей наибольшей электрострикцией также обладают дипольные, хотя, в принципе, зависимость плотности от электрического поля  имеет место в любой диэлектрической жидкости. Согласно термодинамической теории, в изотропном веществе

 

,

 

где b - сжимаемость;

r - плотность;

e - диэлектрическая проницаемость.

 

Наличие свободных зарядов (электронов и ионов) не исключает электрострикцию, которая наблюдается не только у чистых диэлектриков, но и у ионизированных газов, электролитов и полупроводников, однако, вследствие экранирования свободными зарядами, поле, действующее на связанные с атомами заряды, оказывается уменьшенным. В сильно проводящих средах, например, в металлах, электрическое поле равно нулю и, следовательно, электрострикция отсутствует.

Особую роль играет электрострикция у сегнетоэлектриков, где аномально  большой пьезоэффект  обусловлен так называемой линеаризованной электрострикцией, которая имеет место благодаря наличию в сегнетоэлектриках постоянной, не зависящей от внешнего поля, спонтанной поляризации PS и, следовательно, большого спонтанного внутреннего поля ES, пропорционального PS. При воздействии переменного внешнего поля с амплитудой ~< ES основную роль в выражении для эффекта электрострикции приобретает компонент  с частотой переменного поля и амплитудой ~ESE_ , т.е. напряженность поля ES входит в качестве одного из сомножителей в выражение (1), тем самым линеаризуя и усиливая деформацию, возникающую в результате приложения внешнего поля.

Временные характеристики

Время инициации (log to от -9 до -6);

Время существования (log tc от -9 до 15);

Время деградации (log td от -9 до -6);

Время оптимального проявления (log tk от -2 до 7).

Диаграмма:

Технические реализации эффекта

Техническая реализация эффекта

В жидкой среде находится плоский конденсатор (рис. 1).

 

Втягивание жидкости в конденсатор

 

 

Рис. 1

 

К нему подключен стрелочный вольтметр. При подаче напряжения жидкость втягивается в зазор конденсатора. В качестве жидкой среды лучше брать чистое касторовое масло, в котором для визуализации взвешены окрашенные пластмассовые частицы. Зазор в конденсаторе - порядка сантиметра, размер пластин - порядка 10 сантиметров. Подаваемое напряжение - 5-10 кВ. Наблюдаем течение на краях пластин при подаче и снятии напряжения.

Применение эффекта

Эффект широко применяется в электростикционных преобразователях.

Достоинства электростикционных преобразователей состоят в высокой чувствительности, равномерной частотной характеристике и низком уровне собственного шума, а также в малой температурной зависимости свойств (чувствительности, резонансной частоты, электрического импеданса и т.д.). Их недостатки - сравнительная сложность конструкции и необходимость применения согласующих каскадов в непосредственной близости от капсуля микрофона: малая емкость конденсатора (несколько десятков пикофарад) и большое сопротивление нагрузки исключают возможность присоединения электростикционного преобразователя к усилительному устройству кабелем даже малой длины, т.к. в этом случае чувствительность резко падает в результате того, что емкость микрофона шунтируется емкостью кабеля. В качестве согласующих устройств используются либо катодные повторители на миниатюрных электронных лампах, либо каскады, выполненные на полевых транзисторах.

Для увеличения чувствительности электростикционных преобразователях на неподвижном электроде делают канавки или выемки и повышают поляризующее напряжение U0, однако величина U0 ограничена опасностью электрического пробоя между обкладками конденсатора и возможностью залипания мембраны в результате ее прогиба из-за действия электрических сил. ОбычноU0 не превышает 250 В. Электростикционные преобразователи могут работать и без поляризующего напряжения. Это достигается применением в устройствах материалов, несущих на себе постоянный электрический заряд (электреты). Электретная полимерная пленка помещается в зазоре между электродами. Свойства полимерных электретов позволяют обеспечить стабильную работу микрофонов в течении десятков лет при заряде, соответствующем напряжению 150В.

В диапазоне звуковых частот чувствительность электростикционных преобразователей колеблется в пределах 5-50 мВ/Па. При динамическом диапазоне 10-150 дБ. У более высокочастотных электростикционных преобразователей (известны миниатюрные электростикционные преобразователи с линейной характеристикой вплоть  до 100-140 кГц) чувствительность снижена до 0,5-3 мВ/Па, зато они могут работать в полях со звуковыми давлениями до 174-184 дБ.

Разновидностью электростикционных преобразователей являются акустические зонды, предназначенные для измерений в малых объемах и труднодоступных местах. Для этого служат трубчатые звукопроводы. Такие зонды могут выполняться как обычные конденсаторные микрофоны, но снабжены трубчатыми насадками разной длины и диаметра, либо иметь "бесконечную" длинную линию, обеспечивающую режим бегущей волны в приемной трубке с целью устранения в ней нежелательных резонансов.

Электростикционные преобразователи предназначенные для измерения колебаний поверхностей твердых тел, устроены, в принципе, аналогично электростикционным преобразователям для воздушной среды, только подвижным электродом служит сама колеблющаяся поверхность тела, амплитуду колебаний которой необходимо измерить. В таких электростикционных преобразователях чаще применяется способ измерения амплитуды колебаний, основанный на частотной модуляции. Детектируя полученный высокочастотный сигнал, можно определить частоту и амплитуду колебаний вибрирующей поверхности.

Литература

 1. Ультразвук / Под ред. И.П. Голяминой.- М.: Советская Энциклопедия, 1979.

 2. Бреховских Л.М., Гончаров В.В. Введение в механику сплошных сред.- М.: Наука, 1982.

 3. Акустополяризационные измерения характеристик анизотропии горных пород (методические рекомендации). Апатиты, 1985.

 4. Физика. Большой энциклопедический словарь.- М.: Большая Российская энциклопедия, 1999.- С.90, 460.

 5. Новый политехнический словарь.- М.: Большая Российская энциклопедия, 2000.- С.20, 231, 460.

Ключевые слова

  • диэлектрик
  • электрическое поле
  • давление
  • электрострикция

Разделы естественных наук:

Переменные электрические поле и ток
Электрическое поле
Электродинамика

Формализованное описание Показать