Чудо  - Рациональность - Наука - Духовность

Клуб Исследователь - главная страница

ЖИЗНЕННЫЙ ПУТЬ - это путь исследователя, постигающего тайны мироздания

Библиотека

Наука и технологии

 

Главная

 

Наука и технологии

Наш сайт доступен на 52 языках

 

 

 

Разнообразие ландшафта и методы его
измерения

 

Введение

 

Биологическое разнообразие определено в Конвенции, принятой в Рио-де-Жанейро как «вариабельность живущих организмов любого происхождения, включая наземные, морские и другие водные экосистемы и экологические комплексы, частью которых они являются. Оно включает разнообразие внутри вида, между видами и экосистемами. Другими словами биологическое разнообразие – вариабельность всего живого на Земле. Оно обеспечивает человечество всем продовольствием, многими лекарствами и индустриальными продуктами и обеспечивает человеческое благосостояние через экологические услуги. Биологическое разнообразие также обеспечивает региональные возможности развития и действует как источник вдохновения и культурной идентификации» [Гайд по Конвенции 1997].

Наиболее общепринятое понимание экологического разнообразия (ecological diversity) понятие более общее, несколько шире, а иногда трактуется как синоним биологического разнообразия, и связывается с двумя компонентами: видовое богатство, или разнообразие (variety), как число объектов разного сорта на единицу пространства или к общему объему выборки и как относительное обилие индивидуумов каждого сорта [Pielou, 1975; Magurran, 1988; Odum, 1989 и др.].

С наиболее общей точки зрения биологическое разнообразие может рассматриваться как «терминологический зонтик, для обозначения разнообразия природы, включающего в себя все виды животных, растений и микроорганизмов, экосистем и протекающих в них экологических процессов. При этом можно выделить три различных уровня: генетическое разнообразие, видовое разнообразие и разнообразие экосистем. Генетическое разнообразие есть сумма генетической информации, содержащейся в генах всех особей растений, животных и микроорганизмов, обитающих на Земле. Видовое разнообразие обозначает количество видов. К разнообразию экосистем относится количество разных местообитаний, биотических сообществ и экологических процессов…» [McNeely et al., 1990. С. 17].

Эти представления [ Уиттекер, 1980; Бигон и др.; Peet, 1974; Patil et al., 1979; Solomon,1979; и др.] полностью соответствуют общей трактовке разнообразия У. Р. Эшби [1959], который вводит его через множество возможностей или различимых классов объектов и вероятности принадлежности элемента соответствующему классу. У. Р. Эшби [1959] прямо связывает представление о разнообразии с теорией информации, а Р. Маргалеф [1992] определяет разнообразие как меру информации. С наиболее общих позиций понятие «разнообразие» вводится У. Р. Эшби в его известной книге «Введение в кибернетику». Им, в частности, сформулировано представление о «законе необходимого разнообразия» для замкнутых систем, определяющем функциональную роль разнообразия в системе регулирования и управления.

Если в биологии представление о разнообразии изначально связывалось с некоторыми фундаментальными особенностями жизни и ее организации, то в распространение его в науках о Земле первоначально носит чисто прагматический аспект охраны ценностей природы.

Представление о георазнообразии (geodiversity) и ландшафтном разнообразии (landscape diversity) формируются лишь последние 10 лет в связи с проблемами сохранения и использования среды. Можно утверждать, что понятие георазнообразия, особенно активно разрабатываемое географами Тасмании и Швеции, только входит в науку и лишь в самое последнее время на уровне программы ЮНЕСКО «Человек и биосфера» обсуждается включение его в критериальную систему выбора объектов территориальной формы охраны природы. Коротко георазнообразие (geodiversity) определяется как: диапазон (или разнообразие) геологического строения (bedrock), строения суши (geomorphology) и особенностей почвы, всего комплекса (assemblages), системы и процессов. Это краткое определение неявно включает гидрологические и климатические (атмосферные) процессы, постольку, поскольку они вовлечены в геологические процессы, рельеф суши и почвенные процессы [The Australian Natural Heritage Charter, 2002]. Более длинное и более явное определение дает Eberhard [2002]. Геологическое разнообразие включает свидетельства об истории Земли, прошлой жизни, экосистемах, среде и диапазоне современных процессов (биологических, гидрологических и атмосферных), проявляющихся в породах, рельефе суши и почве.

Авторы обращают внимание на то, что единственная аналогия между георазнообразием и биоразнообразием в том, что оба отражают разнообразие явлений; вне этого самоочевидного подобия «никакие дальнейшие аналогии между детальным характером (природой) или работой биологических и геологических процессов не выражены или не подразумеваются». Впрочем другие разработчики концепции обращают внимание на то, что георазнообразие является основой биоразнообразия и ландшафтного разнообразия.

Другой уровень разнообразия, который обычно, в отличие от георазнообразия, включается в определение биоразнообразия – разнообразие ландшафта. Ландшафт, по авторам Белой книги [Research Priorities Revised White Papers, 1998, Разработка университетского консорциума географической информации (UCGIS) по проблемам пространственного анализа], – это собрание элементов, которое состоит из определенной совокупности видов растений, животных, абиотической страты типа горных пород, типов использования земли также, как культурных или сценических особенностей и социально-экономической и политической динамики. Граница ландшафта изменяется согласно используемому масштабу и цели исследования. Разнообразие ландшафтов есть их число в изучаемой географической области.

Часто ландшафтное разнообразие связывается с представлением о мозаике различных по свойствам пятен неправильной формы (patch), развиваемое в рамках ландшафтной экологии [Brussard, 2000]. (см. Приложение № 2).

Таким образом, в общем случае разнообразие можно трактовать как одну из форм отображения реального мира, при которой подразумеваются следующая схема: 1) окружающий мир воспринимается человеком как явления природы;.2) явления воспринимаются человеком через измеримые им переменные; 3) явления по тем или иным критериям сортируются в сознании человека в определенные более или менее однозначно соотносимые с ними образы или классы (кластеры), состояния явлений или диапазон их варьирования; 4) вводятся некоторые способы измерения или оценки, опирающиеся на подсчет числа классов, частоты их встречаемости или масштаба диапазона и распределения переменных.

С другой стороны, всеобщность понятия разнообразия, безусловно, определяет какую-то его прагматическую значимость, интуитивно воспринимаемую большинством как важное свойство объектов, их активности и, в частности, используемых ими ресурсов и среды, создаваемой ими продукции.

 

Глава 1. Общие представления о разнообразии

 

1.1. Что такое разнообразие? (Прагматический аспект)

Чтобы содержательно использовать это понятие, необходимо в явном виде интерпретировать его фундаментальный и прагматический смысл.

Прагматический аспект разнообразия можно в наиболее полной форме воспроизвести на примере мозаики (как формы изобразительного искусства) и детского конструктора, (как модели любого инженерного сооружения). Мозаика и конструкторы состоят из деталей (patches), то есть множества дискретных, вполне различимых элементов. Каждый элемент описывается некоторыми свойствами. В мозаике это три независимые переменные: цвет, размер, форма. В конструкторах число переменных, характеризующих детали, существенно больше, что, однако, не меняет сути дела.

Целевой функцией как мозаики, так и конструктора является создание некоторых осмысленных картин или конструкций, которые, так или иначе, несут некоторое прагматическое содержание. В известной игрушке – калейдоскопе эстетически осмысленные фигуры возникают случайным образом в результате симметричного отображения случайных пространственных сочетаний элементов мозаики в трех зеркалах. Художник, использующий изобразительные средства мозаики, создает полотна, воспроизводящие некоторые сложные образы и через эстетические эффекты, действующие на психическое состояние людей.

Очевидно, что сложность мозаичной картины, полнота отображения воспроизводимого объекта, ее эстетический эффект при всех прочих условиях зависит от разнообразия исходных деталей. Чем больше градаций цвета, чем больше градаций размеров и форм, тем с большей точностью можно из дискретных элементов создать полотно с малоразличимыми границами, с полной цветовой гаммой переходов, с отсутствием незаполненных щелей или лакун. Из этого мысленно воспроизводимого эксперимента с полной очевидностью ясно, что чем больше исходное разнообразие мозаики или деталей в конструкторе, тем больше можно создать различных по сложности полотен и конструкций с различным функциональным назначением.

Итак, первый смысл разнообразия сводится к созданию возможностей для производства нового разнообразия конструкций (систем) разного целевого назначения. Отсюда вытекает высокий интерес к сохранению разнообразия любых свойств природы, как к сохранению возможностей человека создавать на их основе интересующие его конструкции. При этом само по себе разнообразие не гарантирует качество и функциональное назначение будущих продуктов, а лишь определяет возможность их синтеза.

Из этого примера вытекает еще одно важное отношение: разнообразие деталей порождает разнообразие конструкций, которые сами по себе могут рассматриваться как детали конструкций более сложного следуюшего уровня. (Например, слог – слово – фраза – абзац и т. д.) Из этих простых моделей с полной очевидностью вытекает иерархичность организации мета системы, конструируемой на основе исходного разнообразия атомарных элементов. При этом важно отметить, что разнообразие картин будет заведомо больше разнообразия свойств исходной мозаики. Таким образом, возможное разнообразие при переходе от одного уровня к другому при неограниченном числе деталей не уменьшается, а, напротив, увеличивается.

Если представить в качестве модели создание некоторой мозаичной картины, то становится очевидным, что востребованность элементов с различными свойствами будет не равновероятной. Так, например, деталей черного цвета, скорее всего, потребуется меньше, чем деталей с красными или голубыми оттенками (любой пользователь цветного принтера знает, что в картридже обычно первым исчезает зеленый цвет). Деталей очень больших размеров потребуется меньше, чем деталей средних или особенно мелких размеров. Деталей с относительно простой формой (треугольник, квадрат) – меньше, чем со сложной, полигональной. То же относится и к конструкторам. В них существуют типы деталей, представленные в очень большом количестве, и некоторые детали, представленные всего двумя, четырьмя, восьмью штуками. Без этих редких деталей можно создать относительно простые конструкции, но нельзя создать сложные. Если бы все детали встречались равно вероятностно, то возникали бы огромные неиспользованные остатки, создающие проблемы выбора деталей из очень большой их «кучи». В конечном итоге, какой бы набор деталей и по каким бы их свойствам ни рассматривался, всегда существует доминирующий и содоминирующий класс деталей, достаточно обычные, редкие, очень редкие и уникальные детали. Иначе говоря, детали по каждому свойству образуют ранговые распределения. Не равновероятность представительности, или нужды, в деталях разного типа можно считать, по крайней мере, эмпирическим фактом.

Но в данном случае может быть более интересно значение «редкостей». Без редкостей оказывается невозможным создать наиболее сложные конструкции. Если из конструктора утерять наиболее обычную деталь, то возможности конструирования изменятся очень слабо, но если утерять редкую деталь (например, одно колесо из 2, 4, 8), то создать целый тип конструкции будет невозможно.

Этот простой пример показывают глубокую прагматичность всех действий человека и человечества, направленных на сохранение редкостей. С примитивной, утилитарной точки зрения вызывает удивление и легко доказуема бессмысленность сохранения какого-то редкого вида, например тигра, какой-то пещеры, архитектурного памятника, полностью утерявшего свой функциональный смысл и т. п. Все доводы о возможной собственной полезности этих объектов легко устраняются величиной затрат на их сохранение. Однако адаптивное поведение, исторический опыт человека заставляет его прилагать все усилия для сохранения редкостей, как для сохранения возможной сложности будущих конструкций.

Существует, по-видимому, еще один аспект важности сохранения редкости. При использовании любого конструктора его детали, так или иначе, теряются. У одного пользователя они теряются быстро, и конструктор теряет свою функциональную ценность. У другого, более аккуратного субъекта, с большей полнотой контролирующего состояние объекта управления, редкости сохраняются долго. При этом, собирая рассыпанные детали, этот субъект в первую очередь обращает внимание на полноту сбора именно редкостей. Если рассматривать окружающий мир как конструктор, то редкости становятся важными индикаторами наших способностей сколь угодно длительного использования его разнообразия и, соответственно, собственного выживания. Отсюда следует, что способность сохранять редкости есть индикатор собственной жизнеспособности или, иначе говоря, устойчивости. Если эти простые демонстрации убедили читателя в функциональном смысле представления о разнообразии и, более того, в неизбежном существовании некоторых правил его организации (иерархичность, ранговость распределений разнотипных элементов), то его последующие действия с разнообразием станут более осмысленными и, самое главное, ответственными.

При всем этом возникает естественный вопрос: коль скоро разнообразие является столь общим понятием, то какие фундаментальные свойства мира оно отражает и как оно связано с другими фундаментальными представлениями об его организации, такими как энергия, действие, температура, давление и т. п.? Ответ на этот вопрос позволит рассматривать разнообразие вообще и в том числе ландшафтное и биологическое не как некоторый эмпирически воспринятый феномен, а как одну из физических переменных мировой системы, находящуюся в определенном отношении с другими фундаментальными переменными. Если такое рассмотрение возможно, то многие пространственно-временные изменения разнообразия и возможности использования его для обеспечения собственной устойчивости человеком могут быть описаны и представлены на основе общесистемных, фундаментальных, а не чисто эмпирических представлений.

 

1.2. Что такое разнообразие? (Термостатистическая  и информационная основа)

Прежде всего, даже из приведенных выше определений следует, что понятие разнообразия соотносимо с системами, рассматриваемыми как статистические ансамбли, состоящие из множества элементов (общее число элементов, количество их видов (типов), число элементов каждого вида). Очевидно, что это есть термостатистический подход в восприятии мировой системы, при котором система рассматривается как ансамбль бесконечно большого или очень большого числа частиц (элементов) с разными свойствами.

В рассмотренном выше примере синтез каких-либо семантических конструкций, имеющих какой-то прагматический смысл, из исходной мозаики или конструктора осуществлял человек. Однако такие же и более сложные конструкции, например, кристаллы, минералы, горные породы, виды организмов и т. п., создает природа.

Соответственно, не важно, кем и какого класса элемент может быть случайным образом выбран из некоторого множества, важно то, что всегда существует неопределенность выбора, которая легко измерима. Неважно, кто осуществляет этот выбор, человек, животное, растение или вообще природа. Важно, что его результат уменьшает неопределенность и, соответственно, создает информацию. Под словом «выбор» в данном случае понимается не обязательно какой – либо активный целенаправленный процесс. Любое движение в пространстве-времени по некоторой, в том числе и случайной, траектории любой частицы подпадает под понятие выбора, и с этих позиций частица уменьшает априорно существующую неопределенность и получает информацию. Неопределенность движения в ансамбле частиц есть энтропия, и мера количества информации есть величина энтропии S [Хазен,1998].

Энтропия и/или информация есть физическая, материальная переменная, в полной мере сопоставимая с физическими переменными, введенными Гиббсом (температура, фазовое состояние, химическое состояние, давление и объем).

На интуитивном уровне «понятию информация» можно поставить в соответствие понятие «условия среды» . Хотя сами эти условия не участвуют в процессах вещественно-энергетических обменов, но они существенно влияют на их ход и величину диссипации вещества и энергии. В материальности «условий среды» трудно усомниться, а то что условия среды предоставляют возможность выбора конкретного ее состояния из множества существующих, позволяет ставить знак равенства между понятием «условия среды» и информацией-энтропией. Таким образом, понятие «разнообразие» естественно и традиционно связывается с энтропией и информацией.

Энтропия (информация) как функции состояния системы определена отношением:

S = Kln(W),

где K – адиабатическая инварианта системы:

 W – функция, описывающая число состояний (классов состояний), которые может принимать система, образованная многими элементами. Применительно к языку, K- есть средняя длина слова, W – длина алфавита.

Число возможных состояний функционально связано с вероятностью pi = ni/N , где ni – число элементов класса i; i = 1,2,3,…m [Хазен, 1998].

Поэтому определение энтропии через вероятность состояний есть:

S = -KΣlnpi.

Используя содержательные комбинаторные представления, можно ввести энтропию, нормированную относительно объема системы N [Трайбус, 1970; Левич, 1978, 1980, 1982; Хазен, 1998].

Разнообразие всех комбинаций есть:

W = n1!n2!n3!…nm!

Используя формулу приближения Стирлинга, получаем:

ln(W) = S/K = Nln(N) -Sniln(ni).

Инвариантной мерой энтропии, или информации, не зависящей от числа элементов N в системе, будет

H = -KSpi lnpi .

Если система находится в области равновесия и вектора, скорости, описывающие ее динамику, сколь угодно близки нулю, что соответствует условию минимума производства энтропии, то можно определить соотношение между важнейшими параметрами термостатики.

Поиск экстремума функции энтропии, отвечающей состоянию равновесия, осуществляется методом варьирования Эйлера – Лагранжа при условиях

dH~0,  Spi = 1 и Slk(i)pi = Lk, lk(i) , k = 1,2,3,…n – функция, отображающая отношение i-класса объекта к свойству. В примере с мозаикой k свойство – это цвет и форма мозаики, в классической термостатике – это энергетические уровни, в экологической интерпретации – это отношение i-вида к k ресурсу, в ландшафтоведении k – это термодинамические переменные, гравитационное поле, живое вещество, или компоненты ландшафта.

Сумма S берется по классам i =1,2,3,...m.

Тогда Lk в примере с мозаикой – это объем, создаваемый k – свойствами из m – переменных, описывающих мозаику, энергию системы в термостатике, общий объем k-ресурса, доступного одной особи в экологии, объем пространства k – переменной, отображаемый в точке на поверхности Земли.

При этих условиях

pi = mexp(-Slklk(i))

вероятность принадлежности элементов системы классу i. есть ранговое распределение элементов по i-классам p1>p2>p3>…pm, и p1 = m

Инвариант разнообразия и информации:

H = -lnm+SlkLk.

Таким образом, инвариант разнообразия в общем случае есть функция общей энергии системы (SlkLk ), объема доступных ресурсов, совокупного действия (энергией) всех глобальных переменных.

Следовательно, в любом случае разнообразие как энтропия связано с энергией, и чем больше энергия, тем больше энтропия. Параметр lk можно трактовать как меру эволюционного совершенства системы [Левич,1978], и он вполне естественно связан со временем А. М. Хазен [1998]. Чем более эволюционно совершенна система, тем более полно используется «ресурс – энергия» и тем больше разнообразие. Отсюда же следует рост равновесного разнообразия в процессе эволюции системы.

Очевидно также, что разнообразие есть функция числа видов ресурсов k, то есть размерности пространства. Размерность пространства может изменяться в процессе эволюции. В эволюционных масштабах времени размерность пространства может расти.

Параметр m и сумма (SlkLk ), описывающая среду системы и ее эволюционное совершенство, может изменяться не только во времени, но и в пространстве. Их изменение в пространстве определяет географические закономерности изменения разнообразия.

При условии равновесия и примерной равномощности всех типов k-ресурсов, ранговое распределение преобразуется в классическое уравнение термостатики

pi = mexp(-li) – ранговое распределение Гиббса в термостатике или Мотуморы в экологии, при условии линейной зависимости состояния системы от ресурса;

pi = mexp(llog(i)) = mi-l – ранговое распределение Ципфа, при нелинейной зависимости от ресурса;

pi = mexp(llog(a+i)) = m(a+i)-l– распределение Ципфа – Мандерблота где a – число «пустых» состояний с неиспользуемым ресурсом;

pi = mexp(lloglog(i)) = mlogi-l – распределение Макартура «разломанной палки» в при дважды логарифмической зависимости от ресурса.

Таким образом, в зависимости от типа отношения к ресурсу, реализуемы различные модели распределений. Огромный опыт построения ранговых распределений по реальным данным показывает, что чаще всего ранговые распределения видов в сообществе описываются распределением Ципфа.

Используя некоторые простые преобразования, для условия равновесия можно определить зависимость числа классов от общего числа элементов N. Построим эту зависимость для распределения Ципфа. Для этого напомним, что

pi = ni/N,

где ni – число элементов в классе (ранга) i;

N – число элементов, включенных в выборку.

Естественно допустить, что самый маленький последний класс i = m состоит из ограниченного числа элементов, а в пределе – из одного элемента. Если, например, рассматриваются ранговые распределения видов, то по общепринятым представлениям популяция теряет устойчивость при nm = 200, реально же существуют популяции, состоящие из 20 – 30 особей. Очевидно, что шансов выжить у таких популяций мало, но все-таки они могут быть приняты как минимальное значение nm .

С учетом вышесказанного можно записать:

ni = Nmi-l.

Обозначим i = m как Sp. Тогда Sp – самый редкий вид, или в общем случае класс, а nm -– const -– константа.

Простые преобразования сводятся к следующему:

1)         ln(const) = ln(mN)-lln(Sp)

2)         ln(Sp) = (1/l)(ln(mN)-ln(const))

3)         Sp = ((m/const)N)1/l, 1/l=z.

Число особей N в некоторой выборке может быть представлено через плотность особей на единицу площади. Тогда En – математическое ожидание численности на единицу площади. Если обозначить площадь как A, то N = EnA. Таким образом получаем известную зависимость «число видов – площадь»:

Sp = ((m/const)EnA)z,

заменив ((m/const)En)z на b, получаем традиционную запись:

Sp = bAz.

Зависимость числа вида от площади может рассматриваться как эмпирический закон. Его теоретическое обоснование пытался дать Ф. Престон [1962]. Однако его логическая конструкция весьма сложна, а вывод зависимости, вытекающей из термостатики, впервые показанный А. П. Левичем [1978] абсолютно прозрачен и нагляден.

Однако он имеет более общее значение, чем описание зависимости числа видов от площади. Численность особей на единицу площади En всегда есть функция ресурсов и условий среды, что позволяет в общей форме представить фундаментальную зависимость числа видов от ресурсов. На основе очень многих измерений установлено, что чаще всего z~0.26 и изменяется от 0,11 до 0,73. Чем выше значение z , тем положе ранговое распределение и при тех же условиях среды больше число видов (Sp). В термостатике параметр z называется темперой и определяет температуру и эволюционный уровень системы. Таким образом, в ходе эволюции при росте эволюционного совершенства системы ее температура выше. Обычно в горных условиях значение z выше, чем на равнинах. Чаще всего этот факт трактуется как эффект влияния разнообразия горных местообитаний. Однако эта трактовка не может рассматриваться в качестве единственной. Столь же естественно полагать, что в горных условиях время течет быстрее и эволюционное совершенство за счет ограничения пространственных обменов и, соответственно, диссипации информации в ньютоновской шкале времени течет быстрее.

Однако значение зависимости «число видов – площадь» шире. Оно описывает связь между числом классов любой системы и объемом выборки и, соответственно, площади. Оно справедливо и при подсчете классов сообществ на заданном уровне классификации, классов экосистем и классов ландшафтов.

В любом случае число классов при корректном их определении есть функция не только площади, но и мощности среды, или эволюционного времени развития системы.

Прямой вывод из отношений, вытекающих из термостатики, фундаментальной эмпирической зависимости «число видов –площадь», позволяет утверждать, что разнообразие любых свойств биогеосферы есть ее физическая энтропия – информация.

Как и для классических моделей термостатики, для этой системы может быть введено понятие температуры, свободной энергии, объема, давления, работы.

Сходные отношения можно получить из закона пропускной способности канала связи в теории информации К. Шенона [1959] или из закона необходимого разнообразия У. Р. Эшби.

В этом случае подразумевается, что система, состоящая из множества элементов, получает информацию из среды, или из среды на нее действует сигнал мощностью P.

Мощность есть нечто иное, как дисперсия или, приближенно, амплитуда сигнала. Предполагается, что в последовательности каких-либо символов в сигнале имеется некоторый порядок, и система, воспринимая сигнал, должна его воспроизвести с минимумами ошибок. Ошибки возникают в силу того, что в канале связи между средой и системой неизбежен шум. Можно полагать, что система любой природы должна адекватно декодировать сигнал, чтобы сохранить себя (быть устойчивой, находиться в равновесии) в заданных условиях среды. Если ей это не удается, то ее поведение становится неупорядоченным, и она разрушается.

Скорость передачи информации, или разнообразия,

C = wln(1+P/N),

где w – полоса частот.

Очевидно, что это выражение мало отличается от S = Kln(W), и это сходство не является случайным. Закон пропускной способности канала связи выводится также для статистического ансамбля с нормальным распределением и конечной дисперсией P.

Полоса частот выводится из теоремы отсчета Вудворда – Кательникова, доказывающей, любая непрерывная функция воспроизводима, если на каждое ее колебание, или гармонику, приходится не менее двух измерений-отсчетов.

Соответственно, частота wi = 1/Ti , где Tii = период колебаний, T – время и/или пространство. Очевидно, что чем больше длина периода колебания некоторой функции на входе, тем меньше частота. Вообще же сигнал существует в том, и только в том, случае, если происходят колебания с некоторой амплитудой, отличающие нечто от неизменного фона. В общем случае, когда на всех гармониках амплитуда колебаний одинакова, то говорят о хаосе, или белом шуме. Соответственно, полоса частот w в общем случае включает в себя все частоты от нуля до w. Таким образом, если P – длина алфавита для дискретного случая передачи информации, то w – длина слова, принимаемого системой за единицу времени.

Если рассматривать любые системы воспринимающими среду вне зависимости от их физической природы, то их разнообразие «C» есть прямая функция ее разнообразия.

Естественно утверждать, что наблюдаемо, и в конечном итоге существует только то, что динамически устойчиво, хотя бы на очень небольшом интервале пространства – времени.

Если полагать, что система, воспринимающая сигнал, есть некоторый статистический ансамбль, состоящий из множества элементов, то ее устойчивость есть функция выживания этих элементов и того, насколько адекватно реагирует система как целое на ансамбль сигналов, поступающих из среды. Ошибки в декодировании сигнала могут приводить к гибели отдельных элементов, к разрушению взаимодействий между ними и к неадекватному поведению всей системы. Ошибки могут накапливаться. Ошибка одного элемента может влечь за собой ошибки других, что в конечном итоге будет приводить к разрушению всей системы.

Ошибка есть функция полосы частот N = Now, где No – шум на единицу полосы частот. Попросту говоря, чем больше полоса частот, тем больше шум.

Соответственно, С = wlog(1+P/wNo).

Таким образом, одним из способов повышения устойчивости есть уменьшение полосы частот, то есть снижение шума. Однако это автоматически приводит к уменьшению скорости передачи информации, что уменьшает разнообразие системы и также может приводить к потере устойчивости. Следовательно, можно полагать, что при заданной мощности среды существует некоторая оптимальная полоса частот, при которой разнообразие, генерируемое системой, достаточно для обеспечения ее устойчивости.

Если устойчивость – выживание есть единственное условие наблюдаемости и существования любого материального объекта, то он должен варьировать полосой частот своего «приемника» так, чтобы воспринимать необходимое и достаточное разнообразие для обеспечения своей устойчивости.

В этом допустимом диапазоне могут устойчиво существовать m систем со скоростью воспроизводства информации Сi при полосах частот wi. При этом полоса частот всей большой системы есть

W = Uwi    – объединение частот всех подсистем.

Если эти подсистемы имеют сходную физическую природу, то можно полагать, что чем у¢же полоса частот, тем меньше размеры систем, то есть они содержат меньше элементов, чем те которые имеют широкую полосу частот.

Тогда получаем, что размер системы есть функция частоты ni = f(wi). Вид этой функции можно определить исходя из того же требования динамической устойчивости. В соответствии с теорией линейных колебаний между взаимодействующими системами не возникает резонанса, если их частоты не совпадают и соотносятся как:

r = wi/wi+1.

Обычно r лежит в диапазоне 1,5–2.

Тогда, если wmax максимально допустимая полоса частот, которую обозначим как w1, то

w2 = w1/r, w3 = w1/r2,…..wi = w1/r(i-1).

Таким образом, получаем ранговое распределение полос частот и размеров систем, тождественное распределению Гиббса:

ni = n1a(i-1), ln(ni) = ln(n1)+(i-1)ln(a), a = 1/r, a<1.

Записав ln(b) = ln(n1)-ln(a), получаем

ni = bexp(iln(a)) или ni = bexp(-li).

Так как общее число элементов в большой системе равно N, то

pi = ni/N,

 m = b/N и

 pi = mexp(-li).

Возможная пропускная способность системы, состоящей из m подсистем c общей полосой частот W, больше той, которую могла бы иметь одна система с максимально возможной в заданных условиях полосой частот w. Увеличение пропускной способности происходит в результате снижения уровня ошибок:

N = NoΣlnwi .

Если допустить, что wi = W/k, где k – число подсистем, то при достаточной мощности сигнала существует такое число систем k, при котором

ln(W) > kln(W) – kln(k).

Неравенство выполняется при условии k >W. Так как максимальная частота равна 0.5 (частота Найквиста), то это условие выполняется при любом числе подсистем. Более того,

Σlnwi < klnW-klnk.

и при ранговом распределении частот шум существенно меньше, чем при их равенстве.

Используя модель линейных колебаний в рассмотренных преобразованиях, получаем аналог распределения Гиббса. Если использовать модель нелинейных колебаний, то получим распределение Ципфа и бо¢льшую общую пропускную способность системы.

Информационный подход к проблеме синтеза разнообразия полезен тем, что из него прямо вытекает относительная дискретность линейных размеров подсистем, средние размеры которых описываются непрерывной функцией. Таким образом, непосредственно из простых отношений выводится представление о непрерывно-разрывных множествах, иначе о фракталах.

Важно, что, опираясь на необходимость максимизации устойчивости, получаем множество различимых систем, или элементов, принадлежащих к одному классу.

Приращение пропускной способности системы, состоящей из многих подсистем, определяется соотношением Swi – Uwi (разностью между прямой суммой полос частот и их объединением). Разность равна нулю, когда полосы частот подсистем не пересекаются. С ростом пересечения увеличивается, с одной стороны, общая полоса, но, с другой увеличиваются взаимо помехи, что приводит к снижению общей пропускной способности.

Это противоречивое соотношение приводит к зависимости пропускной способности системы от ее энтропии, так что

C/ln(P) = aH(1-bH) –

нормированная к мощности пропускная способность есть параболическая функция разнообразия. Так как энтропия есть сама по себе функция от мощности сигнала P, то инвариантом связи пропускной способности с разнообразием системы является выравненность E = H/ln(m), и в более общей форме можно записать:

C/ln(P) = aE(1-bE),

и производная  d(C/ln(P))/dE = a – 2bE.

Максимум пропускной способности достигается при E = a/2b. Обычно E = 0.31.

Устойчивость каждой из подсистем тем больше, чем больше их независимость друг от друга и меньше риск резонанса. Бо¢льшая независимость обеспечивается, в частности, нелинейностью систем, когда амплитуда их колебаний есть функция частоты.

Вторым механизмом повышения общей пропускной способности является использование нескольких независимых ресурсов [Абросов, 1988] или воздействий, что с формальных позиций то же, что и разделения пространства ресурсов по спектру независимых колебаний. В целом же, чем совершенней система, тем больше ее общая пропускная способность.

Из закона о пропускной способности канала связи следует, что эволюция систем во времени должна идти в направлении роста специализации подсистем как средства повышения их устойчивости. Однако в пределе узкоспециализированные системы при флюктуации мощности сигнала могут терять устойчивость и элиминироваться. Применительно к биологическим системам, узкоспециализированные объекты в результате малых возмущений, возникающих при их взаимодействии, могут терять устойчивость.

Итак, используя две модели синтеза разнообразия, получаем как необходимость:

1)      зависимость разнообразия от мощности среды;

2)      неизбежное направление эволюции подсистем в сторону увеличения их специализации;

3)      направление эволюции систем в область более полного использования мощности сигнала из среды (ресурсов среды) и синтеза большего разнообразия;

4)      неизбежную фрактальность систем любой природы.

При обоих подходах эти следствия вытекают из единственного условия: «наблюдаемо и существует то, что устойчиво, хотя бы на ничтожно малом интервале пространства–времени», и любая система в результате случайных преобразований, получившая большую устойчивость, более наблюдаема и в эволюционном смысле более прогрессивна. Повышение устойчивости есть увеличение памяти и неизбежно собственной информационной сложности. Неизбежность закрепления во времени и пространстве «более устойчивого» создает при относительной дискретности систем направленность эволюции и видимость существования цели.

 

1.3. Иерархическая организация природы

Факт иерархической организации любой наблюдаемой системы очевиден и не требует комментариев. Более важно рассмотреть механизмы возникновения иерархии и ее связи с разнообразием.

Общей основой всех построений является все тот же критерий динамической устойчивости элементов и формирования на этой основе памяти, определяющей возможности дальнейших преобразований.

В основе синтеза иерархии на любом ее уровне лежит случайное движение во времени и пространстве, то есть хаос. Из хаоса возникает порядок на основе очень простого соотношения, вытекающего из теории информации [Оливер, 1958].

Вероятность того, что чисто случайный источник создает сообщение (т. е. последовательность с надлежащей статистикой), составляет для большой длины сообщений n

p = 2 n(logm-H) ,

где m – длина алфавита; H – энтропия.

Если имеем дело с хаосом, то можно полагать распределение нормальным, и разность в скобках заметно больше нуля. При очень большой длине сообщений вероятность появления осмысленных последовательностей чрезвычайно мала, но при ограниченном интервале пространства – времени, в котором происходят реальные взаимодействия, вероятность существенно больше 0.

В результате на заметном интервале пространства – времени возникают относительно локально стационарные структуры, или информация, и между элементами возникают сильные взаимодействия. Каждый элемент имеет собственные колебания, пропорциональные в простейшем случае его массе. Два элемента с близкими частотами колебаний вступают в резонанс и начинают обмениваться энергией. Если их собственные колебания попадают в противофазу, то элемент А притягивает В, когда тот удаляется от него, а B отталкивает A, когда приближается к нему. Между элементами возникает отрицательная обратная связь, и такая новая система на некотором интервале времени оказывается устойчивой.

Если колебания синхронны, то между элементами устанавливается положительная обратная связь. Они взаимно усиливают амплитуду собственных колебаний и с высокой вероятностью разбегаются в пространстве. Такая структура в среде, не накладывающей никаких ограничений на взаимодействия, оказывается неустойчивой.

Но, так или иначе, на первом этапе взаимодействия существует вероятность возникновения относительно устойчивых пар. Если полагать, что массы элементов имеют нормальное или ранговое распределение, то могут возникать на той же основе новые комбинации устойчивых троек элементов (один элемент больше двух взаимосвязанных), четверок элементов (две взаимодействующие пары) и т. п.

Итак, возникает иерархическая система в первом приближении, напоминающая синтез элементарных химических соединений.

Области локальной устойчивости возникают как результат взаимодействия элементов, но в конечном итоге некоторые из них, достигшие определенной сложности, становятся «средой» для других, через свои относительно медленные собственные колебания в равновесном режиме определяя траектории их движения.

Так как в системах, состоящих из нескольких обменивающихся действием (энергией) элементов, всегда существует некоторое запаздывание, то их совместные колебания оказываются нелинейными, и они порождают воздействия в широком, но дискретном диапазоне частот. Этот эффект в еще большей степени увеличивает разнообразие возможных взаимодействий и объединений. В результате из начального хаоса возникает порядок, и соответственно из хаоса возникает информация как мера порядка. При этом устойчивость различных комбинаций может быть весьма различна, и те из них, которые более устойчивы, содержат в себе всю память о прошлом. Эта память может определять их будущие взаимодействия. «Комки», образованные многими частицами, имеют некоторую внутреннюю иерархию, определяющую силу внутренних связей. Однако вследствие взаимодействия с окружающей их средой может существовать некоторый предельный размер, при котором сигналы, проходящие через «комок»-систему, постепенно в результате чисто случайного шума гасятся, и удаленные элементы системы не испытывают действия друг на друга. Комок теряет устойчивость и распадается на части. Его распад подобен распаду снегового кома. Обычно ком разваливается на две неравные большие части и несколько мелких. Но при этом каждая из этих частей содержит информацию о структуре породившего ее большого кома. В результате получаем прямой аналог простейшего размножения путем деления.

Возникшие в результате распада системы могут стать новыми ядрами роста, определяя свою траекторию движения и траектории движения своих соседей. Во всех случаях сохраняются фундаментальные свойства теромостатистического ансамбля, и больших «систем» (будем с этого момента говорить о системах) будет существенно меньше, чем средних и мелких. Системы могут образовываться по иерархической схеме (взаимодействующие пары), и каждой паре ставится в соответствие больший по размерам третий элемент. Две такие тройки взаимодействуют как самостоятельные частицы, так что в конечном итоге система становится иерархически организованной по основанию три. При этом верхний уровень синхронизирует колебания нижних, а нижние поддерживают колебания верхнего. В результате возникает нечто, напоминающее систему управления. Такие структуры обладают еще большей устойчивостью и памятью. Если говорить о терминах ошибок, то вероятность ошибки во взаимодействиях (случайные потери в ходе необходимой синхронизации) минимальна при парном взаимодействии, она заметно растет при взаимодействиях в тройках и становится уже очень большой, хотя и отличной от единицы при взаимодействии 7 частиц. Точно так же и число иерархических уровней в рамках одной системы управления обычно не может быть больше 7. Это соотношение, в частности, отражается в следующем факте иерархии: сельский округ (муниципалитет), район (город), область, страна, мир. Это всего пять иерархических уровней. Могут быть и промежуточные уровни типа региональных союзов государств, или регионов, но число иерархических уровней в системе управления обычно не превышает 7. Соответственно иерархическая управленческая система ведет себя как целое и как целое может включаться в новую систему иерархии или более примитивную систему конгломерации.

Если на первом этапе эволюции положительная обратная связь приводила к отталкиванию элементов или взаиморазрушению систем, то в некоторой достаточно сложной среде возникают условия, при которых синхронные колебания и положительный контур обратной связи становятся основой их устойчивости. Это происходит, когда системы находятся в очень широком спектре колебаний, способных разрушить каждую из них. Тогда две частицы или подсистемы, связанные друг с другом положительным контуром связи, поддерживают траектории движения друг друга, и такие частицы противостоят резонансам, порождаемым средой. Фактически же они становятся способными накапливать действие и, соответственно, энергию. Накопление энергии или действия наиболее эффективно при определенном наборе комбинаций внутренних взаимодействий. Такая система должна иметь более строгий порядок и, обладая широким спектром колебаний, становится способной к более разнообразным формам взаимодействий с окружением. В частности, имея энергию для автономного движения, они более устойчивы в слабых полях взаимодействий на условной «периферии» статистического ансамбля. Так как исходное пространство трехмерно, а в месте со временем четырехмерно, то может возникать, по крайней мере, четыре формы независимых движений, каждая из которых может рассматриваться как «ресурс». Каждая система, по условию максимизации устойчивости, должна осуществлять движение, в основном, по одной из координат, испытывая дополнительные флюктуации по другим. Это создает дополнительные возможности для синтеза систем на основе положительного контура связи. Каждая из систем в паре ориентирована на действия по собственной координате, а их соединение и положительный контур связи позволяет им поддерживать друг друга за счет обмена энергией от разных ресурсов. Устойчивость таких пар естественно повышается. На их основе вновь генерируются «конгломераты» и системы управления.

Однако потенциально различных источников разнообразия больше чем четыре. Системы, частоты колебаний которых различаются более чем в два раза, заведомо порождают независимые переменные для других систем и могут становиться основой для возникновения их коалиций, способных поддерживать свою структуру даже в агрессивной, разрушающей их среде. Как только системы становятся способны накапливать энергию (в общем случае информацию), они становятся способными к самовоспроизводству. Попадая в благоприятные локальные условия многомерной среды, то есть в область равновесия, когда на них не действуют или слабо действуют разрушительные внешние колебания, они через вовлечение в себя комплементарные им действия (ресурсы среды) накапливают энергию и информацию. Так как емкость их структуры ограничена, то при определенных условиях они делятся на части и активно размножаются. Порождая себе подобных, они разрушают собственную область равновесия и переходят в активный (неравновесный) режим с неизбежным поиском новых ресурсов и устойчивых конфигураций. Находя новые устойчивые комбинации с сохранением памяти о прошлом, они извлекают порядок из хаоса на новом энергетическом уровне и становятся устойчивыми в более широком диапазоне среды. Поддержка этой устойчивости требует большего внешнего действия (энергии и ресурсов), и это неизбежная плата за повышение устойчивости. Второй вариант развития в области равновесия – повышение устойчивости за счет специализации (уменьшение полосы частот). Он возможен при избытке энергии и стимулируется функцией максимизации устойчивости каждого элемента системы не в пространстве, как в первом случае, а во времени. Такая специализация в какой то степени связывается с упрощением структуры, потерей некоторых элементов памяти системы, что в пределе ведет к автоматической потере их устойчивости.

Системы, организованные на основе, в первую очередь, положительных обратных связей, способны активно извлекать информацию из среды и расширять свою память и устойчивость. Более того, они способны, становясь на значительном интервале пространства времени существенно независимыми от внешних по отношению к ним систем, сами по себе увеличивать размерность пространства, расширяя возможности поиска новых устойчивых структур.

Эта несколько упрощенная схема эволюции сама по себе иерархична, но каждый уровень ее иерархии содержит свою внутреннюю иерархическую структуру.

Переход от простой системы множества конгломератов к системам, организованным на основе положительных контуров связи, приводит к образованию взаимодополняющих пар, на основе которых возникают аналогичные пары, но более высокого уровня. Системы конгломератов, образованные как агломерация на основе систем-частиц, конкурирующих друг с другом и стремящихся в пространстве и времени найти свою локальную область равновесия, способны преобразоваться на основе положительной связи в содружества, коалиции, симбиотические образования с иерархической организацией. Такие образования становятся тем, что принято называть «целым». На всех этапах их саморазвития из хаоса извлекается информация, то есть структура и порядок.

В принципе модель пропускной способности канала связи в теории информации в равной мере приемлема для описания как разнообразия внутреннего строения, так и разнообразия иерархической организации.

Точно так же можно утверждать, что разнообразие иерархической организации ограничивается мощностью среды и является функцией времени. При этом понятие среды выступает как локальное для конкретного пространственно-временно¢го интервала, так и как бесконечное. В последнем случае оно не теряет смысла, а постулирует лишь саморазвитие через движение.

А. М. Хазан[2000] предлагает рассматривать для каждого уровня иерархии, сочетающего в себе целостные частицы и их термостатистические отношения, свой адиабатический инвариант K ( например, постоянная Планка). С точки зрения теории информации, это есть средняя длина «слова». Переход на новый иерархический уровень ведет к увеличению средней длины слова (например, слог – слово – фраза – абзац). Если в рамках своего иерархического уровня система стремится к равновесию, минимизируя производство энтропии (принцип И. Пригожина), переход на другой иерархический уровень с синтезом новых частиц связан с выходом в неравновесную область с минимумом энтропии, но максимум ее производства и соответственно с приобретением новой информации. Новая информация приводит к возникновению на новом иерархическом уровне нового адиабатического инвариантa (K).

Энтропия иерархической организации есть

S(K) = cln(K),

 где с информационной точки зрения K становится аналогом мощности сигнала P для локального иерархического уровня.

Если общая функция скорости синтеза разнообразия в терминах канала связи

Cw = wln(1+P/N) и

S(K) = c ln(1+TK),

где K может рассматриваться как иерархическая мощность среды, а Т – время эволюции, то

w = cln(1+TcK),

и общий синтез информации описываеться как

Сw = cln(1+TcK)ln(1+P/N).

То есть на более высоких эволюционных уровнях скорость синтеза разнообразия неизбежно выше, чем на более низких, и структуры имеют более высокую сложность.

С другой стороны, приращение разнообразия, выраженное в логарифмической форме при переходе на более высокие иерархические уровни, уменьшается.

Принципиальным эволюционным скачком является переход к системам, способным активно аккумулировать энергию и воспроизводить себе подобных. При этом в таких системах сохраняется память об устойчивых прошлых состояниях. Эта память ограничивает набор устойчивых сочетаний и, соответственно, возможные траектории преобразований. Подобие преобразований систем в конгломерате во многом может определяться известным эффектом «синхронизации мод» их собственных колебаний.

Увеличение разнообразия в процессе эволюции справедливо как для биологических, так и абиотических систем. Это увеличение происходит в результате сохранения разнообразия, созданного прошлыми процессами, наложением на него разнообразия более поздних и современных процессов. Геологические тела, созданные на разных этапах эволюции, так и или иначе проявляют свои свойства в строении современной поверхности и в существующем разнообразии условий среды. Более высокие пространственно-временные уровни организации поверхности Земли имеют большее разнообразие, чем нижние. Само же возникновение этих уровней, как и в общем случае, может быть объяснено неизбежностью одновременных независимых движений в широком спектре частот.

  

1.4. Разнообразие и функционирование

Функционирование обычно соотносится со способностью системы осуществлять полезную работу, то есть оказывать некоторое действие на свое окружение. Для биологических систем функционирование связывается с чистой биологической продукцией. Общая продукция составляет сумму чистой продукции и затрат на основной обмен или на поддержание собственной структуры за единицу времени.

Для термодинамических систем тем больше действие, чем далее удалены они от области равновесия. Система в области равновесия обладает максимумом энтропии и минимумом действия.

Мерой способности к действию, или мерой преобразования, является H – энтропия Кульбака [Стратанович, 1985], величина которой может быть получена через сравнение равновесного рангового распределения системы с реальными. В частном случае могут быть введены локальные меры оценки отклонения реального состояния от области равновесия.

Так как в любом случае переход в ходе эволюции от нижнего иерархического уровня к верхнему приводит к росту устойчивости, определяемому более сложной структурой, то удельные затраты энергии (действий) на поддержку структуры с каждым иерархическим уровнем увеличиваются. При этом затраты на поддержку всей системы увеличиваются непропорционально увеличению ее размеров. Во всех случаях действует аллометрическая зависимость диссипации энергии

Ed = aMb ,

где М – масса;

 a – диссипация энергии на единицу веса в единицу времени,

 b < 1 – параметр, часто трактуемый как отношение поверхности к объему и обычно приравнивается к 0,75.

Очевидно, что это эмпирическое соотношение есть нечто иное, как другая форма записи информационного соотношения, в котором мощность сигнала определяется массой:

Cd = ln(E) = ln(a) +bln(M = b(ln(a)/b +ln(M)) = bln(a-bM).

Если положить, что шум N = ab, что точно соответствует смыслу диссипации, то получаем:

Сd = bln(M/N).

В последнем выражении не хватает в скобках только единицы, определяющей минимальный допустимый уровень мощности сигнала. Таким образом, удельная диссипация энергии есть не более как шум в степени – b , то есть в полосе частот b.

Можно полагать, что шум тем больше, чем больше информации приходится преобразовать системе для поддержки своей устойчивости. Рост структурной сложности есть логарифмическая функция от времени (t), затраченного от начала эволюции (T) до времени формирования иерархического уровня – возраста (А):

t = T-A и ln(Nt) = wln(T- A).

Полоса частот w в случае инвариантности отношений очевидно должна быть равна 1/b, то есть 3/2 (b = 0.75). На рис. 1 показана эмпирическая зависимость удельного основного обмена (a) как функции возраста таксона животных. Константа в показательном уравнении без учета знака равна 1,488, что неотличимо от ожидаемого значения 1,5.

Таким образом, эмпирический коэффициент точно отвечает предположениям, вытекающим из теории иерархических преобразований. Платой за повышение устойчивости является степенной рост удельной диссипации. Но при этом структурные преобразования при переходе от нижнего уровня к верхнему уменьшают затраты энергии на каждую единицу создаваемой информации. Ихкновенни на новых иерархнства ресурсов по спектру независимых частотнообразия и разнообразия лан Общий обмен с переходом от уровня к уровню растет точно по той же зависимости, что и с увеличением веса в каждой конкретной группе животных.

Внешний парадокс в соотношении: «кпд падает – устойчивость растет» разрешается тем, что создание некоторой продукции при самовоспроизводстве есть только одна и при этом не самая эффективная, а, может быть, даже наиболее примитивная, первичная форма повышения устойчивости. По мере эволюции и перехода на более высокие уровни на основе извлечения информации из взаимодействий возникают и закрепляются в памяти механизмы, обеспечивающие большую устойчивость при меньших затратах энергии.

 

Можно полагать, что этот общий закон эволюции разнообразия есть необходимость постоянного расширения области взаимодействий. То, что обычно определяется как «энергия»,– солнечная энергия, энергия, накопленная в форме полезных ископаемых, энергия связей атома, – есть одна из форм действий, обеспечивающая через неравновесные переходы, скачки по ступеням, усложнения организации и повышения устойчивости. По-видимому, обойти это соотношение невозможно, и потребность в энергии в ходе эволюции вместе с ростом разнообразия прогрессивно растет. В общем рост энергетических затрат определяется неизбежным увеличением в сложных структурах термодинамического первичного шума (хаоса ), не меняющего своей природы и остающимся источником новой информации.

Фактически тот же эффект проявляется и в определении связи некоторой полезной продукции (или работы) с разнообразием системы на любом уровне ее организации. Чем сложней система и выше иерархический уровень ее организации, тем больше затраты энергии на поддержание ее структуры и при прочих равных условиях ниже коэффициент ее полезного действия, или способность к производству действия (работы), но выше ее устойчивость или надежность.

Таким образом, во всех случаях, чем больше разнообразие системы или, в общем случае, ее сложность, тем больше затраты на получение от нее полезной продукции, хотя качество этой продукции может быть более высоким. Одним из важных показателей качества является устойчивость этой продукции к широкому диапазону внешних воздействий и незаменимость ее (информации) в конструкциях более высокого иерархического уровня организации.

Если вам понравился сайт, то поделитесь со своими друзьями этой информацией в социальных сетях, просто нажав на кнопку вашей сети.
 
 
 
 
  Locations of visitors to this page
LightRay Рейтинг Сайтов YandeG Яндекс цитирования Яндекс.Метрика

 

Besucherzahler

dating websites

счетчик посещений

russian brides

contador de visitas

счетчик посещений